3.1.67 \(\int \frac {1}{\sqrt {a+c x^2} (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=266 \[ \frac {\sqrt {2} f \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\sqrt {2} f \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 266, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {985, 725, 206} \begin {gather*} \frac {\sqrt {2} f \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\sqrt {2} f \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-((Sqrt[2]*f*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2
 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])])) + (S
qrt[2]*f*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4
*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 985

Int[1/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2
]}, Dist[(2*c)/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c)/q, Int[1/((b + q + 2*c*x)*Sqrt[
d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx &=\frac {(2 f) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{\sqrt {e^2-4 d f}}-\frac {(2 f) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{\sqrt {e^2-4 d f}}\\ &=-\frac {(2 f) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{\sqrt {e^2-4 d f}}+\frac {(2 f) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{\sqrt {e^2-4 d f}}\\ &=-\frac {\sqrt {2} f \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {\sqrt {2} f \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 247, normalized size = 0.93 \begin {gather*} \frac {2 \sqrt {2} f \left (\frac {\tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{2 \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\tanh ^{-1}\left (\frac {2 a f+c x \left (\sqrt {e^2-4 d f}-e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2-2 c \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right )}}\right )}{2 \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

(2*Sqrt[2]*f*(-1/2*ArcTanh[(2*a*f + c*(-e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e
^2 - 4*d*f])]*Sqrt[a + c*x^2])]/Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])] + ArcTanh[(2*a*f - c*(e
+ Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])]/(2*Sqrt[2*a
*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])])))/Sqrt[e^2 - 4*d*f]

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.36, size = 131, normalized size = 0.49 \begin {gather*} -2 \sqrt {c} \text {RootSum}\left [\text {$\#$1}^4 f-2 \text {$\#$1}^3 \sqrt {c} e-2 \text {$\#$1}^2 a f+4 \text {$\#$1}^2 c d+2 \text {$\#$1} a \sqrt {c} e+a^2 f\&,\frac {\text {$\#$1} \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )}{2 \text {$\#$1}^3 f-3 \text {$\#$1}^2 \sqrt {c} e-2 \text {$\#$1} a f+4 \text {$\#$1} c d+a \sqrt {c} e}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-2*Sqrt[c]*RootSum[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (Log[-(S
qrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1)/(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ]

________________________________________________________________________________________

fricas [B]  time = 1.62, size = 5073, normalized size = 19.07

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

-1/4*sqrt(2)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 + (c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^
2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (
16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3
*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a
*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f))*log((4*c^2*d*e*f*x - 2*a*c*e^2*f + sqrt(2)*(c^2*d*e^3
+ 4*a*c*d*e*f^2 - (4*c^2*d^2*e + a*c*e^3)*f - (c^3*d^3*e^3 + a*c^2*d*e^5 - 4*a^3*d*e*f^4 + (4*a^2*c*d^2*e + a^
3*e^3)*f^3 + (4*a*c^2*d^3*e - 5*a^2*c*d*e^3)*f^2 - (4*c^3*d^4*e + 5*a*c^2*d^2*e^3 - a^2*c*e^5)*f)*sqrt(c^2*e^2
/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3
 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*
a^2*c^2*d*e^4)*f)))*sqrt(c*x^2 + a)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 + (c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (
8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^
2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 1
1*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^2*d^2*e^2 + a*c*e
^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)) + 2*(4*a^3*d*f^4 - (8*a^2*c*d^2
 + a^3*e^2)*f^3 + 2*(2*a*c^2*d^3 + 3*a^2*c*d*e^2)*f^2 - (a*c^2*d^2*e^2 + a^2*c*e^4)*f)*sqrt(c^2*e^2/(c^4*d^4*e
^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*
e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e
^4)*f)))/x) + 1/4*sqrt(2)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 + (c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2
+ a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*
a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*
d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^2*d^2*e^2 + a*c*e^4 - 4*a^2
*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f))*log((4*c^2*d*e*f*x - 2*a*c*e^2*f - sqrt(2
)*(c^2*d*e^3 + 4*a*c*d*e*f^2 - (4*c^2*d^2*e + a*c*e^3)*f - (c^3*d^3*e^3 + a*c^2*d*e^5 - 4*a^3*d*e*f^4 + (4*a^2
*c*d^2*e + a^3*e^3)*f^3 + (4*a*c^2*d^3*e - 5*a^2*c*d*e^3)*f^2 - (4*c^3*d^4*e + 5*a*c^2*d^2*e^3 - a^2*c*e^5)*f)
*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(
2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3
*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))*sqrt(c*x^2 + a)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 + (c^2*d^2*e^2 + a*c*e^4 - 4*
a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2
*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*
a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^2*d^
2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)) + 2*(4*a^3*d*f^4 -
 (8*a^2*c*d^2 + a^3*e^2)*f^3 + 2*(2*a*c^2*d^3 + 3*a^2*c*d*e^2)*f^2 - (a*c^2*d^2*e^2 + a^2*c*e^4)*f)*sqrt(c^2*e
^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d
^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 +
2*a^2*c^2*d*e^4)*f)))/x) - 1/4*sqrt(2)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 - (c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3
+ (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2
*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4
+ 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^2*d^2*e^2 + a*
c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f))*log((4*c^2*d*e*f*x - 2*a*c*e
^2*f + sqrt(2)*(c^2*d*e^3 + 4*a*c*d*e*f^2 - (4*c^2*d^2*e + a*c*e^3)*f + (c^3*d^3*e^3 + a*c^2*d*e^5 - 4*a^3*d*e
*f^4 + (4*a^2*c*d^2*e + a^3*e^3)*f^3 + (4*a*c^2*d^3*e - 5*a^2*c*d*e^3)*f^2 - (4*c^3*d^4*e + 5*a*c^2*d^2*e^3 -
a^2*c*e^5)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^
2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*
d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))*sqrt(c*x^2 + a)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 - (c^2*d^2*e^2 +
 a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2
+ 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2
)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)
*f)))/(c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)) - 2*(
4*a^3*d*f^4 - (8*a^2*c*d^2 + a^3*e^2)*f^3 + 2*(2*a*c^2*d^3 + 3*a^2*c*d*e^2)*f^2 - (a*c^2*d^2*e^2 + a^2*c*e^4)*
f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12
*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c
^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/x) + 1/4*sqrt(2)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 - (c^2*d^2*e^2 + a*c*e^4 -
 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*
d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*
(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^2
*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f))*log((4*c^2*d*e*
f*x - 2*a*c*e^2*f - sqrt(2)*(c^2*d*e^3 + 4*a*c*d*e*f^2 - (4*c^2*d^2*e + a*c*e^3)*f + (c^3*d^3*e^3 + a*c^2*d*e^
5 - 4*a^3*d*e*f^4 + (4*a^2*c*d^2*e + a^3*e^3)*f^3 + (4*a*c^2*d^3*e - 5*a^2*c*d*e^3)*f^2 - (4*c^3*d^4*e + 5*a*c
^2*d^2*e^3 - a^2*c*e^5)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c
*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*
f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))*sqrt(c*x^2 + a)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 - (
c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/
(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3
+ a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a
^2*c^2*d*e^4)*f)))/(c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e
^2)*f)) - 2*(4*a^3*d*f^4 - (8*a^2*c*d^2 + a^3*e^2)*f^3 + 2*(2*a*c^2*d^3 + 3*a^2*c*d*e^2)*f^2 - (a*c^2*d^2*e^2
+ a^2*c*e^4)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*
e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^
4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Eval
uation time: 1.45Error index.cc index_gcd Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.01, size = 589, normalized size = 2.21 \begin {gather*} -\frac {\sqrt {2}\, \ln \left (\frac {-\frac {\left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right ) c}{f}+\frac {2 a \,f^{2}-2 c d f +c \,e^{2}-\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}+\frac {\sqrt {2}\, \sqrt {\frac {2 a \,f^{2}-2 c d f +c \,e^{2}-\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}\, \sqrt {4 \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )^{2} c -\frac {4 \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right ) c}{f}+\frac {4 a \,f^{2}-4 c d f +2 c \,e^{2}-2 \sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\sqrt {-4 d f +e^{2}}\, \sqrt {\frac {2 a \,f^{2}-2 c d f +c \,e^{2}-\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}+\frac {\sqrt {2}\, \ln \left (\frac {-\frac {\left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right ) c}{f}+\frac {2 a \,f^{2}-2 c d f +c \,e^{2}+\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}+\frac {\sqrt {2}\, \sqrt {\frac {2 a \,f^{2}-2 c d f +c \,e^{2}+\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}\, \sqrt {4 \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )^{2} c -\frac {4 \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right ) c}{f}+\frac {4 a \,f^{2}-4 c d f +2 c \,e^{2}+2 \sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\sqrt {-4 d f +e^{2}}\, \sqrt {\frac {2 a \,f^{2}-2 c d f +c \,e^{2}+\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x)

[Out]

1/(-4*d*f+e^2)^(1/2)*2^(1/2)/((2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*ln((-(e+(-4*d*f+e^2)^(
1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*
a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*(e+(-4*d*f+e^
2)^(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+2*(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2))/(x
+1/2*(e+(-4*d*f+e^2)^(1/2))/f))-1/(-4*d*f+e^2)^(1/2)*2^(1/2)/((2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f
^2)^(1/2)*ln((-(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2
)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+
e^2)^(1/2))/f)^2*c-4*(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+2*(2*a*f^2-2*c*d*f+c*e^2-(-4
*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` f
or more details)Is 4*d*f-e^2 positive, negative or zero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{\sqrt {c\,x^2+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)

[Out]

int(1/((a + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________